Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat.

نویسندگان

  • James G Heys
  • Christopher F Shay
  • Katrina M MacLeod
  • Menno P Witter
  • Cynthia F Moss
  • Michael E Hasselmo
چکیده

UNLABELLED Medial entorhinal cortex (MEC) grid cells exhibit firing fields spread across the environment on the vertices of a regular tessellating triangular grid. In rodents, the size of the firing fields and the spacing between the firing fields are topographically organized such that grid cells located more ventrally in MEC exhibit larger grid fields and larger grid-field spacing compared with grid cells located more dorsally. Previous experiments in brain slices from rodents have shown that several intrinsic cellular electrophysiological properties of stellate cells in layer II of MEC change systematically in neurons positioned along the dorsal-ventral axis of MEC, suggesting that these intrinsic cellular properties might control grid-field spacing. In the bat, grid cells in MEC display a functional topography in terms of grid-field spacing, similar to what has been reported in rodents. However, it is unclear whether neurons in bat MEC exhibit similar gradients of cellular physiological properties, which may serve as a conserved mechanism underlying grid-field spacing in mammals. To test whether entorhinal cortex (EC) neurons in rats and bats exhibit similar electrophysiological gradients, we performed whole-cell patch recordings along the dorsal-ventral axis of EC in bats. Surprisingly, our data demonstrate that the sag response properties and the resonance properties recorded in layer II neurons of entorhinal cortex in the Egyptian fruit bat demonstrate an inverse relationship along the dorsal-ventral axis compared with the rat. SIGNIFICANCE STATEMENT As animals navigate, neurons in medial entorhinal cortex (MEC), termed grid cells, discharge at regular spatial intervals. In bats and rats, the spacing between the firing fields of grid cells changes systematically along the dorsal-ventral axis of MEC. It has been proposed that these changes could be generated by systematic differences in the intrinsic cellular physiology of neurons distributed along the dorsal-ventral axis of MEC. The results from our study show that key intrinsic physiological properties of neurons in entorhinal cortex of the bat and rat change in the opposite direction along the dorsal-ventral axis of entorhinal cortex, suggesting that these intrinsic physiological properties cannot account in the same way across species for the change in grid-field spacing shown along the dorsal-ventral axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex.

Chronic recordings in the medial entorhinal cortex of behaving rats have found grid cells, neurons that fire when the rat is in a hexagonal array of locations. Grid cells recorded at different dorsal-ventral anatomical positions show systematic changes in size and spacing of firing fields. To test possible mechanisms underlying these differences, we analyzed properties of the hyperpolarization-...

متن کامل

Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.

Layer II stellate cells at different locations along the dorsal to ventral axis of medial entorhinal cortex show differences in the frequency of intrinsic membrane potential oscillations and resonance (Giocomo et al., 2007). The frequency differences scale with differences in the size and spacing of grid-cell firing fields recorded in layer II of the medial entorhinal cortex in behaving animals...

متن کامل

Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.

Neurons from layer II of the medial entorhinal cortex show subthreshold membrane potential oscillations (SMPOs) which could contribute to theta-rhythm generation in the entorhinal cortex and to generation of grid cell firing patterns. However, it is unclear whether single neurons have a fixed unique oscillation frequency or whether their frequency varies depending on the mean membrane potential...

متن کامل

Voltage dependence of subthreshold resonance frequency in layer II of medial entorhinal cortex.

The resonance properties of individual neurons in entorhinal cortex (EC) may contribute to their functional properties in awake, behaving rats. Models propose that entorhinal grid cells could arise from shifts in the intrinsic frequency of neurons caused by changes in membrane potential owing to depolarizing input from neurons coding velocity. To test for potential changes in intrinsic frequenc...

متن کامل

Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing.

Grid cells in layer II of rat entorhinal cortex fire to spatial locations in a repeating hexagonal grid, with smaller spacing between grid fields for neurons in more dorsal anatomical locations. Data from in vitro whole-cell patch recordings showed differences in frequency of subthreshold membrane potential oscillations in entorhinal neurons that correspond to different positions along the dors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 36 16  شماره 

صفحات  -

تاریخ انتشار 2016